Photonic crystal fibres (PCFs – sometimes also known as “holey” or “microstructured” fibres) have been the focus of increasing scientific and technological interest since the first working example was reported in 1996 [1,2]. Although superficially similar to a conventional optical fibre, PCF has a unique microstructure, consisting of an array of microscopic holes (i.e., channels) running along its entire length. These holes act as optical barriers or scatterers, which suitably arranged can “corral” light within a central core (either hollow or made of solid glass). The holes can range in diameter from ~25 nm to ~50 µm. Although most PCF is formed in pure silica glass, it has also recently been made using polymers [3] and non-silica glasses [4], where it is difficult to find compatible core and cladding materials suitable for conventional total internal reflection guidance.

PCF supports two guidance mechanisms: total internal reflection, in which case the core must have a higher average refractive index than the holey cladding; and a two-dimensional photonic bandgap, when the index of the core is uncritical – it can be hollow or filled with material [2]. Light can be controlled and transformed in these fibres with unprecedented freedom, allowing for example the guiding of light in a hollow core, the creation of highly nonlinear solid cores with anomalous dispersion in the visible and the design of fibres that support only one transverse spatial mode at all wavelengths. Applications are emerging in many diverse areas of science and technology.

For example, as first shown by Ranka et al [5], an ultra-small core fibre made from solid glass and surrounded by very large air-holes can be arranged to have a zero chromatic dispersion wavelength in the 800 nm Ti:sapphire band. This fibre produces spectacular spectral broadening of high repetition rate 100 fs pulses, with a brightness some $10,000 \times$ brighter than the sun and a similar bandwidth. This source is transforming the fields of optical coherence tomography, spectroscopy and

![Figure: Extruded SF6 glass fibre for producing a super-continuum out to 2300 nm [4]](image)
frequency metrology [6]. The ability to control dispersion over broad bands of
wavelengths is ushering in a new era in nonlinear optics [7,8]. Recently a record-
breaking supercontinuum spectrum, extending out to 2300 nm, has been demonstrated
in a SF6 glass fibre (see Figure). In its hollow core form [9], PCF also solves a key
long-standing challenge in photonics, for which there is no good conventional
solution: How to force light to interact – strongly, reproducibly and over long path-
lengths – with low-density materials such as gases, vapours and liquids. This is an
exciting development with major implications for numerous gas-based nonlinear
optical and laser devices. Recently a hydrogen Raman cell was demonstrated [10]
with a threshold energy of 800 nJ – some 100× lower than previously reported. In
September 2002, breakthrough losses of 13 dB/km were reported in hollow-core
photonic bandgap fibre [11], and MW soliton propagation explored [12]. Fully
characterised hollow core PCF is now commercially available with losses below 0.1
dB/m [13].

These examples illustrate how the PCF concept is ushering in a new and more
versatile era of fibre optics, with a multitude of different applications spanning many
areas of science and technology.

4. V. V. Ravi Kanth Kumar et al., *Opt. Exp.* 10 (1520-1525) 2002
8. D.V. Skryabin et al., *Science* 301 (1705-1708) 2003
10. F. Benabid et al., *Science* 298 (399-402) 2002
12. D.G. Ouzounov et al., *Science* 301 (1702-1704) 2003

About the Speaker
Philip Russell is Professor in the Department of Physics at the University of Bath,
where he heads the Optoelectronics Group. Previously he worked in universities and
research laboratories across Europe and in the USA. He has 25 years experience (and
over 300 publications) in many aspects of photonics and has helped pioneer a number
of developments in fibre gratings, photonic band gap materials, acousto-optic fibre
devices, nonlinear optics and periodically poled materials. He is the founding chair of
the Optical Society of America's Topical Meeting Series on Bragg Gratings,
Photosensitivity and Poling in Glass. He is a Fellow of the Optical Society of America
and in 2000 won its Joseph Fraunhofer Award/Robert M. Burley Prize for his
invention of photonic crystal ("holey") fibre. In 2002 he won the Applied Optics
Division Prize of the Institute of Physics. His work on photonic crystals (both in films
and fibres) is recognised by a continuing series of plenary, keynote and invited talks at
conferences and summer schools all over the world.

All are welcome to attend the seminar. For further information please contact:
Professor H.K.Tsang, Department of Electronic Engineering, The Chinese University
of Hong Kong. Tel. 26098254, email hktsang@ee.cuhk.edu.hk